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Optimizations for Parallel Object-Oriented Frameworks *

Fede Bassettif Kei Davis! Daniel Quinlant

Abstract

Application codes reliably under perform the advertised performance of existing
architectures, compilers have only limited mechanisms with which to effect sophisticated
transformations to arrest this trend. Compilers are forced to work within the
broad semantics of the complete language specification and thus can not guarantee
correctness of more sophisticated transformations. Object-oriented frameworks provide
a level of tailoring of the C++ language to specific, albeit often restricted contexts.
But such frameworks traditionally rely upon the compiler for most performance
level optimization, often with disappointing results since the compiler must work
within the context of the full language rather than the restricted semantics of
abstractions introduced within the class library. No mechanism exists to express the
restricted semantics of a class library to the compiler and effect correspondingly more
sophisticated optimizations.

In this paper we explore both a family of transformations/optimizations appropri-
ate to object-oriented frameworks for scientific computing and present a preprocessor
mechanism, ROSE, which delivers the more sophisticated transformations automati-
cally from the use of abstractions represented within high level object-oriented frame-
works. We have found that these optimizations permit improved performance over
FORTRAN 77 by factors of three to four, sufficiently interesting to suggest that higher
level abstractions can contain greater semantics and that the greater semantics can
be used to drive more sophisticated optimizations than are possible within lower level
languages.

1 Introduction

Application codes reliably under perform the advertised performance of existing architec-
tures, compilers have only limited mechanisms with which to effect sophisticated transfor-
mations to arrest this trend. Compilers are forced to work within the broad semantics of the
complete language specification and thus can not guarantee correctness of more sophisti-
cated transformations. Object-oriented frameworks provide a level of tailoring of the C++
language to specific, albeit often restricted contexts. But such frameworks traditionally
rely upon the compiler for most performance level optimization, often with disappointing
results since the compiler must work within the context of the full language rather than
the restricted semantics of abstractions introduced within the class library. No mecha-
nism exists to express the restricted semantics of a class library to the compiler and effect
correspondingly more sophisticated optimizations.

In this paper we explore both a family of transformations/optimizations appropriate to
object-oriented frameworks for scientific computing and present a preprocessor mechanism,
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ROSE, which delivers the more sophisticated transformations automatically from the use
of abstractions represented within high level object-oriented frameworks. We have found
that these optimizations permit improved performance over FORTRAN 77 by factors of
three to four, sufficiently interesting to suggest that higher level abstractions can contain
greater semantics and that the greater semantics can be used to drive more sophisticated
optimizations than are possible within lower level languages.

In our current work we apply this technology to the A++/P++ array class, a
serial/parallel array class for scientific computing. A++/P++ form the basis for the
Overture Framework, an object-oriented framework for complex geometries and adaptive
mesh refinement. The mechanisms we will discuss are central to portable performance
of object-oriented frameworks on varying architectures (cache based architectures in
particular), and are not specific to a particular framework.

Initial results have demonstrated that we can use the ROSE preprocessor technique
to optimize the performance of array class code. These techniques are completely
programmable in principle any transformation could be introduced the research issue then
becomes one of defining transformations that are appropriate. Separate work on types
of transformations have demonstrated transformations with performance 3.5 times that of
the F77 semantically equivalent code (on the SGI Origin 2000). The ROSE preprocessor
mechanisms clearly permits the introduction of much more general transformations than
the non-programmable expression template mechanisms, and provide greater portability,
without the extremely long compile times associated with expression templates. This
paper presents our current results and evaluations of performance compared to alternative
mechanisms such as C, F77.

2 A++/P+4++ Array Class Library

A4+ and P++ [?] are array class libraries for performing array operations in C++ in
serial and parallel environments, respectively. The use of P4+ is the principle mechanism
by which the OVERTURE Framework operates in parallel.

A++ is a serial array class library similar to FORTRAN 90 in syntax, but not requiring
any modification to the C++ compiler or language. A4+ provides an object-oriented array
abstraction specifically well suited to large scale numerical computation. It provides efficient
use of multidimensional array objects which serves to both simplify the development of
numerical software and provide a basis for the development of parallel array abstractions.
P+ is the parallel array class library and shares an identical interface to A+, effectively
allowing A++ serial applications to be recompiled using P++ and thus run in parallel.
This provides a simple and elegant mechanism that allows serial code to be reused in the
parallel environment.

P++ provides a data parallel implementation of the array syntax represented by the
A+ array class library. To this extent it shares a lot of commonality with FORTRAN
90 array syntax and the HPF programming model. However, in contrast to HPF, P4+
provides a more general mechanism for the distribution of arrays and greater control as
required for the multiple grid applications represented by both the Overlapping Grid model
and the Adaptive Mesh Refinement (AMR) model. Additionally, current work is addressing
the addition of task parallelism as required for parallel adaptive mesh refinement.

Here is a simple example code segment that solves Poisson’s equation with the Jacobi
method in either a serial or parallel environment using the A++/P++ classes. Notice how
the Jacobi iteration for the entire array can be written in one statement.



// Solve u_xx + u_yy = f by a Jacobi Iteration

Range R(0O,n) // ... define a range of indices: 0,1,2,...,n
floatArray u(R,R), f(&,R) // ... declare two two-dimensional arrays
f=1.; u=0.; h=1./n; // ... initialize arrays and parameters

Range I(1,n-1), J(1,n-1); // ... define ranges for the interior

for( int iteration=0; iteration<100; iteration++ )
u(1,]) = .26%(u(I+i,N+u(Il-1,D+u(l,J+1)+u(l,J-1)-£(I,D *(h*h)); // ... data parallel

The use of complex parallel computers is so invasive to the development of high
performance scientific software that some mechanism is required to encapsulate parallelism
at some level in a general enough way to permit more productive application development.
It seems clear that higher level abstractions would encapsulate parallelism at some lower
level, it is a question as to how low a level it is appropriate to encapsulate parallelism within
scientific computing. The use of array operations within an object-oriented framework
for serial and parallel is natural and desirable and forms one of the lowest levels where
parallelism can be encapsulated so that higher level abstractions can be built. At the same
time it is one of the highest levels where parallelism can be encapsulated because lower
levels of abstraction are not tied as directly to the large volumes of data present within
arrays which typically form the basis of scientific computing (at least for finite difference
and finite volume based applications). Also, with the development of array languages in
the 1970’s and the introduction of array abstractions in FORTRAN 90 most scientists are
aware of the array abstraction already.

3 Alternative Program Models

The use of array objects as an abstraction within scientific computation while being
relatively well understood (because of FORTRAN 90 Array abstractions) is not commonly
seen as hiding an alternative more traditional and simpler programming model, the local
patch model; the more explicit programming model of using simple local patches of
contiguous data on a single processor to express an algorithm. The array abstraction is a
higher level abstraction representing a collection of such local patch data; where it exists,
on the collection of processors making up the entire machine. Of course within this model
the communication is handled by the user but the development of the abstraction permits
most such communication to be handled simply using a single function call (instead of a
rather tedious number of MPI function calls).

The use of a parallel array abstraction does not preclude the use of the local data directly
and in fact encourages this since it can be done only were it is perceived to be important
instead of globally within a application code as would be required otherwise. The use of
the lower level local patch model also permits the leveraging of existing serial and parallel
application codes (older FORTRAN of C, serial or parallel kernels or applications). The
performance of using the local patch abstraction is of course that of the FORTRAN or C
it is written in, with absolutely none of the overhead introduced by the array abstraction.
In this way we see how it is that both abstractions live comfortably together and how each
may be used where appropriate.

The following example demonstrates these two programming models on a simple
application code fragment:

e The Array Abstraction

doubleArray X(100);



doubleArray Y(100);

X =1.0;

Y =1.0;

Range I (1,98);

X(I) = ( Y(I+1) + Y(I-1) ) * 0.5;

In this code fragment using the array abstraction, notice that in the serial and parallel
environments the source is identical. The communication is handled internally,
with no more messages generated than in the explicit message passing programming
model. In fact, since the message passing is hidden there is greater opportunity for
optimizations specific to message latency hiding, the effect is to provide an automated
level of optimization beyond that which would be provided in an explicit message
passing model and which is architecture dependent, resulting in greater performance
(something we will demonstrate later in this paper). Note that we seek to provide the
user some refuge from the explicit message passing programming model to provide
increased productivity, while at the same time making it accessible as required
(because people write software and people are have different tastes, styles, biases,
and requirements).

o The Local Patch Abstraction

doubleArray X(100);
doubleArray Y(100);
double* X_ptr = X.getLocalDataPointer();
double* Y_ptr = Y.getLocalDataPointer();
int 1i;
for (i=0; i <
{
*X_ptrlil
*Y_ptr[i]
}
for (i=0; i < X.localLength(0)-2; i++)
{
*X_ptrli] = (Y_ptr[i+1] + Y_ptr[i-1]) * 0.5;
}
X.updateGhostBoundaries () ;

bd

.localLength(0); i++)

1.0;
1.0;

>

Example code using the local patch programming model. Such code clearly operates
at the efficiency of C, since it is C code. The communication at the ghost boundary
(where the local data is partitioned across processors) is updated using simple function
call, since the communication schedule is known more sophisticate optimizations are
possible and which may well be architecture specific.

The two examples are semantically the same, but have different implementations to
reflect the two different programming models. It should be clear that A++/P++ and
the presence of the higher level array abstraction does not preclude the use of alternative
(what we might consider more primitive) programming methods. It might be felt that this
later local patch programming model is the right way to proceed if performance is to be
preserved, but we will show just how throughly in error this assumption really is. Because
the later example nails down the implementation so specifically as to provide no significant
room for optimization and it is the optimization (an architecture dependent issue) that is
the key to good performance.



4 Relaxation as a case study

The case of local relaxation methods form an important part of elliptic solution methods
particularly for multigrid methods. This work on optimization of relaxation methods is part
of more general work on optimizations specific to multigrid for cache based architectures.
Such solution techniques form important parts of more sophisticated application codes
and a dominate the performance in many cases. The use of techniques to improve the
performance of relaxation techniques and multigrid more specifically can be expected to
play an important role in improving performance of such applications more generally.

The perceived truth about performance is that FORTRAN 77 compilers define it for
any given algorithm. That for a particular code fragment such as we have shown, the
FORTRAN 77 implementation and execution defines the upper bound of the performance.
Where it is conceived that this may be in some doubt it is perceived to be at least almost
true to within some marginal percentage That the FORTRAN 77 compiler could define,
in even marginal limits, the performance potential is however quite in error. The reasons
have to do with the potential of optimizations which the FORTRAN 77 compiler could not
do because of the assumptions it could have to make and the minimal semantics that can
be understood from the implementation.

5 Temporal Blocking as an Optimization

These optimizations are described in greater detail in [?]. They form a specific instance of
a more general optimization that originates in older out-of-core algorithms, main memory
in this case is treated as slower storage (out-of-core), while cache is treated as faster storage
(core). In this case we treat the instance of a stencil operation on a structured grid as a
graph and define covers for that graph. The covers define localized regions (blocks) and
form the basis of what we will define to be 7-neighborhood-covers. In this case we introduce
optimizations based upon these graph coverings. The T-neighborhood-covers are treated
much like compiler blocking in the trivial case of 7 = 1, but provide greater temporal
locality for values of 7 > 1.

The general idea behind applying this transformation to structured grid computations
is to cover (block or tile) the entire grid by smaller sub-grids; solving the problem for each
subgrid sequentially.

Let n be the number of grid points in a two dimensional square domain. Thus let A be
a v/n x y/n grid. Let the size of L, cache be M. Now consider solving the linear relaxation
problem for a subgrid S of size & x k. In the first iteration, all the points in S can be
relaxed. After the second iteration, points in the grid of size (k — 2) x (k — 2) have the
correct value. After continuing the procedure for 7 iterations, it follows that a subgrid of
size (k —27) X (k — 27) has been computed up to 7 time steps. Thus we can now cover the

VN X \/n by Uct?\/TL)L;(—E%EQ—T) which can be rewritten as (k—_”m The total number of loads
into the L; cache is no more than kQ(—k_g—T)z. In order to carry out the relaxation for T

time units, the total number of L, loads is no more than k2(k—'_%;)7%—; By setting k = vV M,

and 7 = v/M /4, we can obtain an improvement of O(v/M) in the number of L; loads over
a naive method (which would take O(Tn) time).

In practice, for the solution of elliptic equations using multigrid methods on structured
grids, 7 is typically a small constant between 2 and 10 and thus the asymptotic improvement
calculated above does not directly apply; nevertheless the analysis shows that we can get
constant factor improvements over the naive method in terms of the memory access. and
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the experimental results bear bear this out. The naive method we refer to here is the
blocking introduced by the compiler. Of course less efficient methods could be proposed
(e.g. local relaxation methods) which would permit significantly larger values of 7, but
these less efficient solution methods are not of practical interest, in the design of modern
algorithms. The idea can be extended in a straightforward way to the cases when the value
at a grid point is calculated by using not only the neighboring values but all neighbors that
are a certain bounded distance away.

As demonstrated, temporal blocking can give a factor of two improvement in perfor-
mance over compiler blocking. What has not yet been shown is the dependency of perfor-
mance improvement on the number of iterations for a fixed block size. The goal has been
to reduce the number of capacity misses to a negligible value. Figures 13 and 14 show the
result of varying the number of iterations for a fixed block size for a problem that doesn’t
fit in secondary cache. The figures show that achieved performance improvement is not as
good as predicted—performance improves with the number of iterations, but never exceeds
a factor of two. At this stage the ideal performance is a crude estimate; in future this esti-
mate will be improved. Figure 14 makes clear that the improvement factor is determined by
the reduction in the number of misses. The figure shows that the achieved miss behavior is
not relatively constant, but depends on the number of iterations. The problem appears to
be an artifact of the test code, which assumes that the transitory array it is always resident
in cache, which is ideally correct. The assumption is based on an implementation that en-
sures that there is always enough space in cache for the transitory array and a subset of the
other arrays. The test code currently ignores the fact that permanent residency in cache
for the transitory array cannot be guaranteed just by ensuring that there is always enough
cache space for all the subsets of the arrays. Different subsets of the other arrays would map
to the same locations as does the transitory array, resulting in a significant increase in the
number of conflict misses. Various solutions are being evaluated under the assumption that
there is still room for improvement before reaching some physical architecture-dependent
limitations.

‘Figure x shows the use of this optimization in the serial environment to provide
performance significantly better then FORTRAN 77. Since the implementation requires
extra storage and is significantly more complex than the few lines of code that it replaces it
is both not in the range of what the compiler could introduce (partly for lack of sufficient
semantic knowledge about the lover level FORTRAN 77 code) and not readily introduced
by the user (since the semantically equivalent transformation is 6 pages in size).

6 Message Latency Hiding as an Optimization

Can’t be introduced at the local patch level of manipulation of the data.

Tests on a variety of multiprocessor configurations, including networks of workstations,
shared memory, DSM, and distributed memory, show that the cost (in time) of passing a
message of size N, cache effects aside, is accurately modeled by the function L+ CN, where
L is a constant per-message latency, and C is a cost per word. This suggests that message
aggregation—lumping several messages into one—can improve performance.! Note that
this sort of message aggregation does not require the packing and unpacking of multiple
messages.

In the context of stencil-like operations, message aggregation may be achieved by
widening the ghost cell widths. As a specific example, if the ghost cell width is increased

!Cache effects are important but are ignored in such simple models.
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to three, using A and B as defined before, A[0..99,0..52] resides on the first processor
and A[0..99,48..99] on the second. To preserve the semantics of the stencil operation
the second index on the first processor is 1 to 51 on the first pass, 1 to 50 on the second
pass, and 1 to 49 on the third pass, and similarly on the second processor. Following three
passes, three columns of A on the first processor must be updated from the second, and
vice versa. This pattern of access is diagrammed in Figure 1.
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Clearly there is a tradeoff of computation for communication overhead. In real-world appli-
cations the arrays are often numerous and thus not as large as memory permits. Distributed
across numerous processors the arrays become relatively small, with communication time
exceeding computation time, and the constant time L of a message nearly matching or ex-
ceeding the linear time CN. Experimental results for a range of problem sizes and number
of processors is given in Figure 2. Additional gains may be obtained by using asynchronous

35
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Fic. 4. Performance improvement of message aggregation as a function of problem size
and number of processors (synchronous message passing) (results are mostly independent of ghost
boundary widths (values of 2-6 are used)).

(non-blocking) message passing, which allows computation to overlap communication. Here
the computation involving the ghost boundaries and adjacent columns is performed first,
communication initiated, then interior calculations performed. Widening the ghost bound-
aries and so allowing multiple passes over the arrays without communication decreases the
ratio of communication time to computation time; when reduced to one or less communi-
cation time is almost entirely hidden.

This is the principal mechanism for hiding message latency, but it also enables the more
sophisticated cache based transformations (presented in the previous section) in the parallel
environment.

7 The Key to Superior Performance

For better or worse, the existence of many cache based optimizations require semantic
knowledge (or program analysis) largely unavailable at existing FORTRAN 77 or C level
languages. If this is too broad a statement consider that no compiler does such aggressive
optimizations as we have presented.

The key to obtaining better performance is to permit more sophisticated optimizations.
The key to having more sophisticated optimizations be used is to have them be introduced
automatically through some mechanism. The key to knowing when such optimizations
can be automatically introduced is to have a higher level of semantic knowledge about
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a program. And since gleaning the semantics of the intended algorithm from its
implementation in a low level language is too difficult, we suggest that if greater semantics
is to be captured, the program should be written using higher level abstractions and
that these abstractions be designed purposefully given specific optimizations. However,
having the abstractions is not sufficient, some preprocessing mechanism with knowledge of
the abstractions’ semantics must be added to automate the optimizations. Many simple
optimizations could be placed into the implementation of the abstractions themselves but
these are not an important target of our work. The more relevant abstractions are the ones
which interact and have possible optimizations given their context within loops and their
interaction with one another (such as array abstractions in scientific applications).

It is not clear how far this approach toward high performance can be taken. It is clear
that some dramatic examples can readily demonstrate this approach. The development of
improved performance for relaxation techniques is just one example.

8 Conclusion

In our alternative program models it was precieved that the local patch model was the better
performance oriented solution but it is clear that the specific nature of its implementation
does not provide sufficient room for either the message passing latency hiding optimization
or the temporal blocking optimization and thus restricts its overall performance. Its
implementation literally ties it to a specific style of execution and prevents the compiler
from providing substantial optimizations (as if the compile could anyway). It is not the
case yet that the ROSE preprocessor is finished or distributed so the final results are not
certain. For the moment we can only form a guess what approach might be ultimately most
productive.

Ultimately the programmer has to express the semantics of his/her algorithm, this is
typically done by writing source code in one or more computer languages. When this is
done in FORTRAN 77 or C the semantics of the algorithm in the programmers mind is
lost and only the semantics of the language is saved for the compiler to see. From what
the compiler sees, and from the programmers view point, the original algorithm’s semantics
can not be reconstructed (ignoring possible artificial intelligence work to accomplish this).
The most fundamental step where information was lost that could have saved significant
semantic information is the translation of the algorithm into software in the first place
(the writing of the computer code). If at this level the translation had been to a language
containing higher level semantics less of the algorithm’s semantic might have been lost and
more of it used to generate optimizations. Alas, we do not seek to build new languages, only
to provide higher level abstractions to simplify the application development. It is a bonus,
yet to be well capitalized upon, at this stage of the process to consider the optimizations
that the higher level semantics can drive. To date, the possible optimizations for possible
high level abstractions are not a part of the object-oriented design, but likely they should
be. We have demonstrated some of the potential gain from this approach.

The algorithm’s translation into higher level abstractions might be sufficient to preserve
the intended semantics of the algorithm if the optimizations could be introduced at this
level. Such would require a mechanism to recognize the higher level abstractions and
generate automated optimizations. The mechanism we propose for this is a preprocessor,
the responsibility of the preprocessor is to recognize the higher level abstractions and
introduce optimizations based upon the context of their use within the application code.
The preprocessor must know the semantics of the abstractions in order to introduce the
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optimizations automatically. In the case of an object-oriented framework, this makes the
preprocessing mechanism a component of the framework. The design of a high performance
object-oriented framework is then guided by the design of objects with the intend of being
optimized by existing optimizations. A good design of an object-oriented framework thus
weighs the value of an abstraction and the semantics it represents against the semantics
that is to be recovered by the preprocessor and is intended to help guide the optimization.
The existing constraints to the object-oriented design have not had to include the possibility
of optimizations beyond that which could be expected (or hoped for) by the compiler (very
low level indeed and of marginal value in many cases for scientific applications).

In modern architectures access to cache memory is typically many times faster than
to main memory (factors of 100 are common); the tradeoff (given constant dollar cost) is
speed for size. The potential of these and other cache based transformations is directly
dependent upon the relative cost of cache vs. main memory. Clearly, no cache is large
enough to make a difference and this relative cost is increasing quickly with faster CPU and
memory systems that fail to keep pace. The greater hope of phenomenal processing speeds
in the future is largely held hostage by the relatively poor bandwidth to main memory
(where the data is located and which scientific applications require) unless significant
cache based transformations are automated. Our reward for tolerating this is ever deeper
memory hierarchies to program amidst. The current poor state of the art in compiler
technology to introduce these significant cache based transformations only hides this from
us. The common perception that FORTRAN 77 performance is the best one can do is an
example of this.

9 Software Availability

The OVERTURE Framework and documentation is available for public distribution at the
Web site http://www.llnl.gov/casc/Overture. A++/P++ dates back to its first version
in 1990 and has been publicly distributed since 1994; the current version was released in
1996. The OVERTURE libraries have been under development since 1994, and have been
available to the public since 1996. The AMR++ classes for adaptive mesh refinement in
OVERTURE are still under development and are expected to be released in fourth quarter
1998.



